The check matrix of a [82,73,5]4 (dual distance 44).

For more information see Extending and lengthening BCH-codes.

1000000001332303003323103323022031221033311121232222230232302213220332232033032313
0100000001201133303011213011320232303130020033311000013211132032232123230220122032
0010000003301311332113223113123000323331231310210011121200312332221221313212213320
0001000003111333131003020103303323121311310222100110032001230301113211330320033110
0000100000311133313100302010330332312131131022210011003200123030300013322300312230
0000010003210311333102332013022010322231320211300110020201213232333200122030211212
0000001003100233131102131013313222121201301332011100122101320213130001003103132011
0000000101022320310233310222313313033113221012033332222022230233120010011301231000
0000000013323030033231033230220312210333111212322222302323022110131101123120032122

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some codes | home |